Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Med Virol ; 96(5): e29628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682568

RESUMEN

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Acrecentamiento Dependiente de Anticuerpo , COVID-19 , Inmunoglobulina G , Coronavirus del Síndrome Respiratorio de Oriente Medio , SARS-CoV-2 , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , Inmunoglobulina G/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Persona de Mediana Edad , Masculino , Femenino , Pruebas de Neutralización , Adulto , Vacunas contra la COVID-19/inmunología , Antígenos Virales/inmunología , Animales , Anciano , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
2.
JAMA Netw Open ; 6(6): e2319222, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389876

RESUMEN

Importance: In the ongoing COVID-19 pandemic, there remain unanswered questions regarding the nature and importance of the humoral immune response against other coronaviruses. Although coinfection of the Middle East respiratory syndrome coronavirus (MERS-CoV) with the SARS-CoV-2 has not been documented yet, several patients previously infected with MERS-CoV received the COVID-19 vaccine; data describing how preexisting MERS-CoV immunity may shape the response to SARS-CoV-2 following infection or vaccination are lacking. Objective: To characterize the cross-reactive and protective humoral responses in patients exposed to both MERS-CoV infection and SARS-CoV-2 vaccination. Design, Setting, and Participants: This cohort study involved a total of 18 sera samples collected from 14 patients with MERS-CoV infection before (n = 12) and after (n = 6) vaccination with 2 doses of COVID-19 mRNA vaccine (BNT162b2 or mRNA-1273). Of those patients, 4 had prevaccination and postvaccination samples. Antibody responses to SARS-CoV-2 and MERS-CoV were assessed as well as cross-reactive responses to other human coronaviruses. Main Outcomes and Measures: The main outcomes measured were binding antibody responses, neutralizing antibodies, and antibody-dependent cellular cytotoxicity (ADCC) activity. Binding antibodies targeting SARS-CoV-2 main antigens (spike [S], nucleocapsid, and receptor-binding domain) were detected using automated immunoassays. Cross-reactive antibodies with the S1 protein of SARS-CoV, MERS-CoV, and common human coronaviruses were analyzed using a bead-based assay. Neutralizing antibodies (NAbs) against MERS-CoV and SARS-CoV-2 as well as ADCC activity against SARS-CoV-2 were assessed. Results: A total of 18 samples were collected from 14 male patients with MERS-CoV infection (mean [SD] age, 43.8 [14.6] years). Median (IQR) duration between primary COVID-19 vaccination and sample collection was 146 (47-189) days. Prevaccination samples had high levels of anti-MERS S1 immunoglobin M (IgM) and IgG (reactivity index ranging from 0.80 to 54.7 for IgM and from 0.85 to 176.3 for IgG). Cross-reactive antibodies with SARS-CoV and SARS-CoV-2 were also detected in these samples. However, cross-reactivity against other coronaviruses was not detected by the microarray assay. Postvaccination samples showed significantly higher levels of total antibodies, IgG, and IgA targeting SARS-CoV-2 S protein compared with prevaccination samples (eg, mean total antibodies: 8955.0 AU/mL; 95% CI, -5025.0 to 22936.0 arbitrary units/mL; P = .002). In addition, significantly higher anti-SARS S1 IgG levels were detected following vaccination (mean reactivity index, 55.4; 95% CI, -9.1 to 120.0; P = .001), suggesting potential cross-reactivity with these coronaviruses. Also, anti-S NAbs were significantly boosted against SARS-CoV-2 (50.5% neutralization; 95% CI, 17.6% to 83.2% neutralization; P < .001) after vaccination. Furthermore, there was no significant increase in antibody-dependent cellular cytotoxicity against SARS-CoV-2 S protein postvaccination. Conclusions and Relevance: This cohort study found a significant boost in cross-reactive NAbs in some patients exposed to MERS-CoV and SARS-CoV-2 antigens. These findings suggest that isolation of broadly reactive antibodies from these patients may help guide the development of a pancoronavirus vaccine by targeting cross-reactive epitopes between distinct strains of human coronaviruses.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Masculino , Adulto , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Estudios de Cohortes , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Inmunoglobulina G , Inmunoglobulina M
3.
Blood Adv ; 7(5): 697-711, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36477543

RESUMEN

Emerging gene therapy clinical trials test the correction of hemophilia A (HA) by replacing factor VIII (FVIII) in autologous hematopoietic stem cells (HSCs). Although it is known that platelets, monocyte/macrophages, and mesenchymal stromal cells can secrete transgenic FVIII, a systematic examination of blood lineages as extrahepatic sources of FVIII, to our knowledge, has not yet been performed. In this study, we sought to provide a comprehensive map of native and lentivirus-based transgenic FVIII production from HSC stage to mature blood cells, through a flow cytometry analysis. In addition, we generated a model of transient HA in zebrafish based on antisense RNA, to assess the corrective potential of the FVIII-transduced HSCs. We discovered that FVIII production begins at the CD34+ progenitor stage after cytokine stimulation in culture. Among all mature white blood cells, monocytes are the largest producers of native FVIII and can maintain protein overexpression during differentiation from HSCs when transduced by a FVIII lentiviral vector. Moreover, the addition of the HSC self-renewal agonist UM171 to CD34+ cells during transduction expanded a subpopulation of CD14+/CD31+ monocytes with excellent ability to carry the FVIII transgene, allowing the correction of HA phenotype in zebrafish. Finally, the HA zebrafish model showed that f8 RNA is predominantly localized in the hematopoietic system at the larval stage, which indicates a potential contributory role of FVIII in hematopoiesis that warrants further investigation. We believe that this study may be of broad interest to hematologists and researchers striving to advance knowledge and permanent treatments for patients with HA.


Asunto(s)
Hemofilia A , Hemostáticos , Animales , Factor VIII/genética , Células Madre Hematopoyéticas/metabolismo , Hemofilia A/terapia , Monocitos/metabolismo , Pez Cebra/metabolismo , Humanos
4.
Sci Adv ; 8(45): eabp9961, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367935

RESUMEN

Knowledge of the mechanisms underpinning the development of protective immunity conferred by mRNA vaccines is fragmentary. Here, we investigated responses to coronavirus disease 2019 (COVID-19) mRNA vaccination via high-temporal resolution blood transcriptome profiling. The first vaccine dose elicited modest interferon and adaptive immune responses, which peaked on days 2 and 5, respectively. The second vaccine dose, in contrast, elicited sharp day 1 interferon, inflammation, and erythroid cell responses, followed by a day 5 plasmablast response. Both post-first and post-second dose interferon signatures were associated with the subsequent development of antibody responses. Yet, we observed distinct interferon response patterns after each of the doses that may reflect quantitative or qualitative differences in interferon induction. Distinct interferon response phenotypes were also observed in patients with COVID-19 and were associated with severity and differences in duration of intensive care. Together, this study also highlights the benefits of adopting high-frequency sampling protocols in profiling vaccine-elicited immune responses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , ARN Mensajero/genética , Vacunas Sintéticas , Interferones , Vacunas de ARNm
5.
Adv Mater ; 34(45): e2205154, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36207284

RESUMEN

There is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features. As a proof of concept, a set of 2D materials, transition metal carbides, nitrides, and carbonitrides (MXenes), is selected to ensure mass detection within the cytometry range while avoiding overlap with more than 70 currently available tags, each able to survey multiple biological parameters. First, their detection and quantification in 15 primary human immune cell subpopulations are demonstrated. Together with the detection, mass cytometry is used to capture several biological aspects of MXenes, such as their biocompatibility and cytokine production after their uptake. Through enzymatic labeling, MXenes' mediation of cell-cell interactions is simultaneously evaluated. In vivo biodistribution experiments using a mixture of MXenes in mice confirm the versatility of the detection strategy and reveal MXene accumulation in the liver, blood, spleen, lungs, and relative immune cell subtypes. Finally, MIBI-TOF is applied to detect MXenes in different organs revealing their spatial distribution. The label-free detection of 2D materials by mass cytometry at the single-cell level, on multiple cell subpopulations and in multiple organs simultaneously, will enable exciting new opportunities in biomedicine.


Asunto(s)
Nanoestructuras , Elementos de Transición , Humanos , Ratones , Animales , Distribución Tisular
6.
Biomedicines ; 10(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36140215

RESUMEN

Fanconi−Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is characterized by the accumulation of glycogen mainly in the liver. It is inherited in an autosomal recessive manner due to mutations in the SLC2A2 gene. SLC2A2 encodes for the glucose transporter GLUT2 and is expressed in tissues that are involved in glucose homeostasis. The molecular mechanisms of dysglycemia in FBS are still not clearly understood. In this study, we report two cases of FBS with classical phenotypes of FBS associated with dysglycemia. Genomic DNA was extracted and analyzed by whole-genome and Sanger sequencing, and patient PBMCs were used for molecular analysis. One patient had an exonic SLC2A2 mutation (c.1093C>T in exon 9, R365X), while the other patient had a novel intronic SLC2A2 mutation (c.613-7T>G). Surprisingly, the exonic mutation resulted in the overexpression of dysfunctional GLUT2, resulting in the dysregulated expression of other glucose transporters. The intronic mutation did not affect the coding sequence of GLUT2, its expression, or glucose transport activity. However, it was associated with the expression of miRNAs correlated with type 1 diabetes mellitus, with a particular significant overexpression of hsa-miR-29a-3p implicated in insulin production and secretion. Our findings suggest that SLC2A2 mutations cause dysglycemia in FBS either by a direct effect on GLUT2 expression and/or activity or, indirectly, by the dysregulated expression of miRNAs implicated in glucose homeostasis.

7.
Front Endocrinol (Lausanne) ; 13: 841788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663312

RESUMEN

Fanconi-Bickel Syndrome (FBS) is a rare disorder of carbohydrate metabolism that is characterized mainly by the accumulation of glycogen in the liver and kidney. It is inherited as an autosomal recessive disorder caused by mutations in the SLC2A2 gene, which encodes for GLUT2. Patients with FBS have dysglycemia but the molecular mechanisms of dysglycemia are still not clearly understood. Therefore, we aimed to understand the underlying molecular mechanisms of dysglycemia in a patient with FBS. Genomic DNA was isolated from a peripheral blood sample and analyzed by whole genome and Sanger sequencing. CRISPR-Cas9 was used to introduce a mutation that mimics the patient's mutation in a human kidney cell line expressing GLUT2 (HEK293T). Mutant cells were used for molecular analysis to investigate the effects of the mutation on the expression and function of GLUT2, as well as the expression of other genes implicated in dysglycemia. The patient was found to have a homozygous nonsense mutation (c.901C>T, R301X) in the SLC2A2 gene. CRISPR-Cas9 successfully mimicked the patient's mutation in HEK293T cells. The mutant cells showed overexpression of a dysfunctional GLUT2 protein, resulting in reduced glucose release activity and enhanced intracellular glucose accumulation. In addition, other glucose transporters (SGLT1 and SGLT2 in the kidney) were found to be induced in the mutant cells. These findings suggest the last loops (loops 9-12) of GLUT2 are essential for glucose transport activity and indicate that GLUT2 dysfunction is associated with dysglycemia in FBS.


Asunto(s)
Enfermedades del Sistema Endocrino , Síndrome de Fanconi , Síndrome de Fanconi/genética , Glucosa/metabolismo , Células HEK293 , Homocigoto , Humanos , Mutación
8.
Front Integr Neurosci ; 16: 879832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655952

RESUMEN

Extracellular vesicles (EVs) are membrane vesicles released from cells to the extracellular space, involved in cell-to-cell communication by the horizontal transfer of biomolecules such as proteins and RNA. Because EVs can cross the blood-brain barrier (BBB), circulating through the bloodstream and reflecting the cell of origin in terms of disease prognosis and severity, the contents of plasma EVs provide non-invasive biomarkers for neurological disorders. However, neuronal EV markers in blood plasma remain unclear. EVs are very heterogeneous in size and contents, thus bulk analyses of heterogeneous plasma EVs using Western blot and ELISA have limited utility. In this study, using flow cytometry to analyze individual neuronal EVs, we show that our plasma EVs isolated by size exclusion chromatography are mainly CD63-positive exosomes of endosomal origin. As a neuronal EV marker, neural cell adhesion molecule (NCAM) is highly enriched in EVs released from induced pluripotent stem cells (iPSCs)-derived cortical neurons and brain organoids. We identified the subpopulations of plasma EVs that contain NCAM using flow cytometry-based individual EV analysis. Our results suggest that plasma NCAM-positive neuronal EVs can be used to discover biomarkers for neurological disorders.

9.
Nano Today ; 38: 101136, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33753982

RESUMEN

Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.

10.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33529170

RESUMEN

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Camelus/inmunología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , Camelus/virología , Reacciones Cruzadas , Epítopos , Femenino , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
12.
Mol Cancer ; 20(1): 2, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33390169

RESUMEN

Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.


Asunto(s)
Quimiocinas/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Terapia Molecular Dirigida , Animales , Quimiocinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Metástasis de la Neoplasia , Microambiente Tumoral/genética
13.
J Immunother Cancer ; 8(2)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268350

RESUMEN

Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.


Asunto(s)
Biomarcadores de Tumor/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Humanos
14.
Stem Cells Int ; 2020: 4356359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32215017

RESUMEN

The role of the mesenchymal stromal cell- (MSC-) derived secretome is becoming increasingly intriguing from a clinical perspective due to its ability to stimulate endogenous tissue repair processes as well as its effective regulation of the immune system, mimicking the therapeutic effects produced by the MSCs. The secretome is a composite product secreted by MSC in vitro (in conditioned medium) and in vivo (in the extracellular milieu), consisting of a protein soluble fraction (mostly growth factors and cytokines) and a vesicular component, extracellular vesicles (EVs), which transfer proteins, lipids, and genetic material. MSC-derived secretome differs based on the tissue from which the MSCs are isolated and under specific conditions (e.g., preconditioning or priming) suggesting that clinical applications should be tailored by choosing the tissue of origin and a priming regimen to specifically correct a given pathology. MSC-derived secretome mediates beneficial angiogenic effects in a variety of tissue injury-related diseases. This supports the current effort to develop cell-free therapeutic products that bring both clinical benefits (reduced immunogenicity, persistence in vivo, and no genotoxicity associated with long-term cell cultures) and manufacturing advantages (reduced costs, availability of large quantities of off-the-shelf products, and lower regulatory burden). In the present review, we aim to give a comprehensive picture of the numerous components of the secretome produced by MSCs derived from the most common tissue sources for clinical use (e.g., AT, BM, and CB). We focus on the factors involved in the complex regulation of angiogenic processes.

15.
Am J Med ; 133(1): 133-142, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31295440

RESUMEN

BACKGROUND: An association between productive cytomegalovirus infection and atherosclerosis was shown recently in several trials, including a previous study of ours. However, the mechanism involved in this association is still under investigation. Here, we addressed the interaction between productive cytomegalovirus infection and endothelial function in patients with ST-elevation myocardial infarction (STEMI). METHODS: We analyzed the presence of cytomegaloviral DNA in plasma and endothelial function in 33 patients with STEMI and 33 volunteers without cardiovascular diseases, using real-time polymerase chain reaction (PCR) and a noninvasive test of flow-mediated dilation. RESULTS: Both the frequency of presence and the load of cytomegaloviral DNA were higher in plasma of patients with STEMI than those in controls. This difference was independent of other cardiovascular risk factors (7.38 [1.36-40.07]; P = 0.02). The results of the flow-mediated dilation test were lower in patients in STEMI than in controls (5.0% [2.65%-3.09%] vs 12. %5 [7.5%-15.15%]; P = 0.004) and correlated negatively with the cytomegaloviral DNA load (Spearman R = -0.407; P = 0.019) independently of other cardiovascular risk factors. CONCLUSIONS: Productive cytomegalovirus infection in patients with STEMI correlated negatively with endothelial function independently of other cardiovascular risk factors. The impact of cytomegalovirus on endothelial function may explain the role of cytomegalovirus in cardiovascular prognosis.


Asunto(s)
Infecciones por Citomegalovirus/epidemiología , ADN Viral/sangre , Endotelio Vascular/fisiopatología , Infarto del Miocardio con Elevación del ST/epidemiología , Adulto , Anciano , Estudios de Casos y Controles , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio con Elevación del ST/fisiopatología , Carga Viral
16.
Mol Ther Methods Clin Dev ; 17: 1-12, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31886317

RESUMEN

Detection of factor VIII (FVIII) in cells by flow cytometry is controversial, and no monoclonal fluorescent antibody is commercially available. In this study, we optimized such an assay and successfully used it as a platform to study the functional properties of phosphoglycerate kinase (PGK)-FVIII lentiviral vector-transduced cells by directly visualizing FVIII in cells after different gene transfer conditions. We could measure cellular stress parameters after transduction by correlating gene expression and protein accumulation data. Flow cytometry performed on transduced cell lines showed that increasing MOI rates resulted in increased protein levels, plateauing after an MOI of 30. We speculated that, at higher MOI, FVIII production could be impaired by a limiting factor required for proper folding. To test this hypothesis, we interfered with the unfolded protein response by blocking proteasomal degradation and measured the accumulation of intracellular misfolded protein. Interestingly, at higher MOIs the cells displayed signs of toxicity with reactive oxygen species accumulation. This suggests the need for identifying a safe window of transduction dose to avoid consequent cell toxicity. Herein, we show that our flow cytometry platform for intracytoplasmic FVIII protein detection is a reliable method for optimizing gene therapy protocols in hemophilia A by shedding light on the functional status of cells after gene transfer.

17.
Mol Cancer ; 18(1): 55, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30925923

RESUMEN

The tumor microenvironment represents a complex network, in which tumor cells not only communicate with each other but also with stromal and immune cells. Current research has demonstrated the vital role of the tumor microenvironment in supporting tumor phenotype via a sophisticated system of intercellular communication through direct cell-to-cell contact or by classical paracrine signaling loops of cytokines or growth factors. Recently, extracellular vesicles have emerged as an important mechanism of cellular interchange of bioactive molecules. Extracellular vesicles isolated from tumor and stromal cells have been implicated in various steps of tumor progression, such as proliferation, angiogenesis, metastasis, and drug resistance. Inhibition of extracellular vesicles secretion, and thus of the transfer of oncogenic molecules, holds promise for preventing tumor growth and drug resistance. This review focuses on the role of extracellular vesicles in modulating the tumor microenvironment by addressing different aspects of the bidirectional interactions among tumor and tumor-associated cells. The contribution of extracellular vesicles to drug resistance will also be discussed as well as therapeutic strategies targeting extracellular vesicles production for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Comunicación Celular , Resistencia a Antineoplásicos , Vesículas Extracelulares/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral/efectos de los fármacos , Animales , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo
18.
Am J Reprod Immunol ; 78(3)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28585708

RESUMEN

PROBLEM: To characterize the amniotic fluid (AF) inflammatory-related protein (IRP) network in patients with a sonographic short cervix (SCx) and to determine its relation to early preterm delivery (ePTD). METHOD OF STUDY: A retrospective cohort study included women with a SCx (≤25 mm; n=223) who had amniocentesis and were classified according to gestational age (GA) at diagnosis and delivery (ePTD <32 weeks of gestation). RESULTS: (i) In women with a SCx ≤ 22 1/7 weeks, the concentration of most IRPs increased as the cervix shortened; those with ePTD had a higher rate of increase in MIP-1α, MCP-1, and IL-6 concentrations than those delivering later; and (ii) the concentration of most IRPs and the correlation between several IRP pairs were higher in the ePTD group than for those delivering later. CONCLUSION: Women with a SCx at 16-22 1/7 weeks have a unique AF cytokine network that correlates with cervical length at diagnosis and GA at delivery. This network may aid in predicting ePTD.


Asunto(s)
Biomarcadores/sangre , Cuello del Útero/anatomía & histología , Inflamación/genética , Amniocentesis , Enfermedades Asintomáticas , Biomarcadores/metabolismo , Citocinas/metabolismo , Femenino , Edad Gestacional , Humanos , Pronóstico , Riesgo , Enfermedades del Cuello del Útero
19.
Drug Test Anal ; 9(11-12): 1794-1798, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28474406

RESUMEN

Blood doping in sports is prohibited by the World Anti-Doping Agency (WADA). To find a possible biomarker for the detection of blood doping, we investigated the changes in blood stored in CPDA-1 blood bags of eight healthy subjects who donated one unit of blood. Aliquots were taken on days 0, 14, and 35. Platelet-free plasma was prepared and stored at -80°C until analysis on a flow cytometer dedicated for the analysis of microparticles (MPs). Changes in the number of red blood cell (RBC) -MPs were highly significant (p < 0.0001) with a mean of 219 (10^3/µL) on day 0 changing to 23 120 (10^3/µL) on day 14 and 29 310 (10^3/µL) on day 35. We conclude that RBC-MPs seem to be a promising biomarker for doping control but confirmation by a transfusion study is necessary.


Asunto(s)
Adenina/química , Biomarcadores/sangre , Citratos/química , Doping en los Deportes , Eritrocitos/química , Glucosa/química , Fosfatos/química , Transfusión Sanguínea , Citometría de Flujo
20.
Sci Rep ; 7(1): 948, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424455

RESUMEN

HIV-1 envelope proteins (Envs) play a critical role in HIV infection. In a correct trimeric conformation, Env mediates virus-cell binding and fusion. Malfunctioning of this machinery renders virions incapable of infecting cells. Each HIV-1 virion carries 10-14 Envs, and therefore a defective Env may not necessarily render a HIV virion non-infectious, since other Env on the same virion may still be functional. Alternatively, it is possible that on a given virion either all the spikes are defective or all are functional. Here, we investigate Env conformations on individual virions using our new nanotechnology, "flow virometry", and a panel of antibodies that discriminate between various Env conformations. We found that the majority of HIV-1 virions carry either only trimeric ("functional") or only defective spikes. The relatively small subfraction of virions that carry both functional and nonfunctional Envs contributes little to HIV infection of human lymphoid tissue ex vivo. The observation that the majority of virions exclusively express either functional or nonfunctional forms of Env has important implications for understanding the role of neutralizing and non-neutralizing antibodies in the immune control of HIV infection as well as for the development of effective prophylactic strategies.


Asunto(s)
VIH-1/metabolismo , Virión/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Células Cultivadas , VIH-1/química , Humanos , Tejido Linfoide/virología , Nanotecnología , Virión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...